µ¼Ê¦¿ÆÑÐ ÇéÐμò½é
| ѧÊõÆ«Ïò£º£º£º ½ðÊôÖÊÁϹ¦Ð§»¯Ó¦Ó㻣»îÑ»ù¸ßìØºÏ½ðÉè¼Æ¡¢¡¢¡¢ÅþÁ¬¼°·Ö×Ó¶¯Á¦Ñ§Ä£Äâ¡£¡£ ¿ÆÑÐÄÜÁ¦£º£º£º Ö÷ÒªÑо¿Æ«ÏòΪ½ðÊôÖÊÁϹ¦Ð§»¯Ó¦Ó㻣»îÑ»ù¸ßìØºÏ½ðÉè¼Æ¡¢¡¢¡¢ÅþÁ¬¼°·Ö×Ó¶¯Á¦Ñ§Ä£Äâ¡£¡£ÏÖÔÚ¹²½ÒÏþÑо¿ÂÛÎÄ13ƪ¡£¡£ÆäÖÐÒÔµÚÒ»×÷Õß½ÒÏþÂÛÎÄ7ƪ£¬£¬£¬°üÀ¨£º£º£º¹ú¼ÊÄÜÔ´ÁìÓò¶¥¼âÆÚ¿¯Nano Energy¡¢¡¢¡¢ÖÊÁϽçÃæÁìÓò¹ú¼Ê×ÅÃûÆÚ¿¯ACS Applied Materials & Interfaces¡¢¡¢¡¢×ÔȻָÊýÆÚ¿¯Journal of Physical Chemistry Letters¡£¡£»£»ùÓÚGoogleѧÊõÅÌÎÊ£¬£¬£¬±»ÒýÓôÎÊýΪ247´Î£¨µ¥Æª±»ÒýÓôÎÊý´óÓÚ80´ÎµÄÂÛÎÄΪ2ƪ£©¡£¡£ÒԷǵÚÒ»×÷Õß½ÒÏþÂÛÎÄ6ƪ£¨°üÀ¨1ƪÅäºÏÒ»×÷£©£¬£¬£¬±»ÒýÓôÎÊýΪ71´Î¡£¡£±ðµÄ£¬£¬£¬ÓÚÌìÏ´߻¯Ñ§Êõ¾Û»á¡¢¡¢¡¢Öйú¿ÅÁ£Ñ§»áµÚʮһ½ìѧÊõÄê»á»ñÓÅÒìǽ±¨½±¡£¡£ ¿ÆÑÐÏîÄ¿£º£º£º (1) ¡¶Öйú-ÎÚ¿ËÀ¼ÖÊÁÏÅþÁ¬ÓëÏȽøÖÆÔì¡°Ò»´øÒ»Æð¡±ÁªºÏʵÑéÊÒ½¨ÉèÓëÁªºÏÑо¿¡·¹ú¼ÒÖØµãÑз¢ÍýÏë×ÓʹÃü¡¶´óÐÍîѺϽð½á¹¹º¸½ÓÖÆÔìÐÎÐÔÒ»Ì廯»ù´¡ÀíÂÛ¡·£¬£¬£¬80ÍòÔª¡£¡£ (2) ¡¶Öйú-ÎÚ¿ËÀ¼ÖÊÁÏÅþÁ¬ÓëÏȽøÖÆÔì¡°Ò»´øÒ»Æð¡±ÁªºÏʵÑéÊÒ¡·ÁªºÏʵÑéÊÒרÏî¡¶·ÏÆúº¸ÁϵķǽðÊô²ôÔÓîÑ»ùºÏ½ð±¡Ä¤ÐÞÊμ°¹¦Ð§»¯Ó¦Óá·£¬£¬£¬20ÍòÔª¡£¡£ (3) ¡¶ÃæÏòÖÇÄܺ¸½ÓµÄ¶à³¡ñîºÏÎïÀíÄ£×Ó¹¹½¨ÓëÒªº¦ÊÖÒÕ¡·Ïȵ¼×¨Ïî¡¶TIG¡¢¡¢¡¢PTA¼°Æä¼¤»Ö¸´ºÏµãº¸Àú³Ì¶àÎïÀí³¡£¡£¨Èȳ¡¡¢¡¢¡¢Á÷³¡¡¢¡¢¡¢µç´Å³¡£¡£©ÊýֵģÄâÑо¿¡·£¬£¬£¬10ÍòÔª¡£¡£ ¿ÆÑÐЧ¹û£¨½üÎåÄ꣩£º£º£º (1) Qin, B., Peng, F.*, et al. Understanding of nitrogen fixation electro catalyzed by molybdenum-iron carbide through the experiment and theory. Nano Energy 2020, 68, 104374. (Q1, IF = 17.881) (2) Qin, B., Peng, F.*, et al. Efficient electrochemical reduction of CO2 into CO promoted by sulfur vacancies. Nano Energy 2019, 60, 43-51. (Q1, IF = 17.881) (3) Qin, B., Peng, F.*, et al. Formation of Lattice-Dislocated Zinc Oxide via Anodic Corrosion for Electrocatalytic CO2 Reduction to Syngas with a Potential Dependent CO:H2 Ratio. ACS Appl. Mater. Inter. 2020, 12, 30466-30473. (Q1, IF = 9.229) (4) Qin, B., Peng, F.*, et al. Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. ACS Appl. Mater. Inter. 2018, 10, 20530-20539. (Q1, IF = 9.229) (5) Qin, B., Peng, F.*, et al. Mechanistic Insights into the Electrochemical Reduction of CO2 and N2 on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations. J. Phys. Chem. Lett., 2021, 12, 7151-7158. (Q1, IF = 6.475) (6) Qin, B., Peng, F.*, et al. Effect of the surface roughness of copper substrate on three-dimensional tin electrode for electrochemical reduction of CO2 into HCOOH. J. CO2 Util. 2017, 21, 219-223. (Q3, IF = 7.132) (7) Qin, B., Peng, F.*, et al. Mechanistic Insights into the Electrochemical Reduction of CO2 on Cyclo[18]carbon using Density Functional Theory Calculations. ChemElectroChem 2020, 7, 1838-1842. (Q3, IF = 4.590) (8) Cai, X.#; Qin, B.#; Peng, F.*, et al. Chlorine-Promoted Nitrogen and Sulfur Co-Doped Biocarbon Catalyst for Electrochemical Carbon Dioxide Reduction. ChemElectroChem 2020, 7, 320-327. (Q3, IF = 4.590, ÅäºÏÒ»×÷) (9) Huang, J.; Cao, Y.*; Qin, B.; Peng, F.*, et al. Highly efficient and acid-corrosion resistant nitrogen doped magnetic carbon nanotubes for the hexavalent chromium removal with subsequent reutilization. Chem. Eng. J. 2019, 361, 547-558. (Q1, IF = 13.273) (10)Zhu, W.; Zhao, K.; Liu, S.; Liu, M.; Peng, F.; An, P.; Qin, B.; Zhou, H.; Li, H.; He, Z.* Low-overpotential selective reduction of CO2 to ethanol on electrodeposited CuxAuy nanowire arrays. J. Energy Chem. 2019, 37, 176-182. (Q2, IF = 9.676)
½Ó´ý¾ßÓÐÖÊÁÏ¡¢¡¢¡¢»¯Ñ§¡¢¡¢¡¢ÎïÀíÅä¾°µÄͬÑⱨ¿¼¡£¡£ |