Ò¼ºÅÓéÀÖAPP

    • Ñо¿Éú×÷Óý
      jyzx bkzs yjszs

ÇØ±ò𩹤³Ìʦ¼ò½é

Ðû²¼ÈÕÆÚ£º£º£º2022-05-07    ä¯ÀÀ´ÎÊý£º£º£º

ÐÕ Ãû

ÇØ±òð©

ÐÔ ±ð

ÄÐ

³öÉúÄêÔÂ

1993Äê2ÔÂ

                 undefined

×î¸ßѧλ

²©Ê¿

×îºóѧÀú

Ñо¿Éú

ÕþÖÎÃæÄ¿

ȺÖÚ

ËùÔÚµ¥Î»

¹ã¶«Ê¡¿ÆÑ§ÔºÖÐÎÚº¸½ÓÑо¿Ëù

Ö°Îñ

¿ÆÑиÚ

µ¼Ê¦Ö°³Æ

¹¤³Ìʦ

ÁªÏµµç»°


µç×ÓÐÅÏä

qinbh@gwi.gd.cn

Ö¸µ¼Ñ§Éúרҵ

ÖÊÁÏ¡¢¡¢¡¢»¯Ñ§¡¢¡¢¡¢ÎïÀí

µ¼Ê¦¿ÆÑÐ

ÇéÐμò½é


ѧÊõÆ«Ïò£º£º£º

½ðÊôÖÊÁϹ¦Ð§»¯Ó¦Ó㻣»îÑ»ù¸ßìØºÏ½ðÉè¼Æ¡¢¡¢¡¢ÅþÁ¬¼°·Ö×Ó¶¯Á¦Ñ§Ä£Äâ ¡£¡£

¿ÆÑÐÄÜÁ¦£º£º£º

Ö÷ÒªÑо¿Æ«ÏòΪ½ðÊôÖÊÁϹ¦Ð§»¯Ó¦Ó㻣»îÑ»ù¸ßìØºÏ½ðÉè¼Æ¡¢¡¢¡¢ÅþÁ¬¼°·Ö×Ó¶¯Á¦Ñ§Ä£Äâ ¡£¡£ÏÖÔÚ¹²½ÒÏþÑо¿ÂÛÎÄ13ƪ ¡£¡£ÆäÖÐÒÔµÚÒ»×÷Õß½ÒÏþÂÛÎÄ7ƪ£¬£¬£¬°üÀ¨£º£º£º¹ú¼ÊÄÜÔ´ÁìÓò¶¥¼âÆÚ¿¯Nano   Energy¡¢¡¢¡¢ÖÊÁϽçÃæÁìÓò¹ú¼Ê×ÅÃûÆÚ¿¯ACS Applied   Materials & Interfaces¡¢¡¢¡¢×ÔȻָÊýÆÚ¿¯Journal of   Physical Chemistry Letters ¡£¡£»£»ùÓÚGoogleѧÊõÅÌÎÊ£¬£¬£¬±»ÒýÓôÎÊýΪ247´Î£¨µ¥Æª±»ÒýÓôÎÊý´óÓÚ80´ÎµÄÂÛÎÄΪ2ƪ£© ¡£¡£ÒԷǵÚÒ»×÷Õß½ÒÏþÂÛÎÄ6ƪ£¨°üÀ¨1ƪÅäºÏÒ»×÷£©£¬£¬£¬±»ÒýÓôÎÊýΪ71´Î ¡£¡£±ðµÄ£¬£¬£¬ÓÚÌìÏ´߻¯Ñ§Êõ¾Û»á¡¢¡¢¡¢Öйú¿ÅÁ£Ñ§»áµÚʮһ½ìѧÊõÄê»á»ñÓÅÒìǽ±¨½± ¡£¡£

¿ÆÑÐÏîÄ¿£º£º£º

(1) ¡¶Öйú-ÎÚ¿ËÀ¼ÖÊÁÏÅþÁ¬ÓëÏȽøÖÆÔì¡°Ò»´øÒ»Æð¡±ÁªºÏʵÑéÊÒ½¨ÉèÓëÁªºÏÑо¿¡·¹ú¼ÒÖØµãÑз¢ÍýÏë×ÓʹÃü¡¶´óÐÍîѺϽð½á¹¹º¸½ÓÖÆÔìÐÎÐÔÒ»Ì廯»ù´¡ÀíÂÛ¡·£¬£¬£¬80ÍòÔª ¡£¡£

(2) ¡¶Öйú-ÎÚ¿ËÀ¼ÖÊÁÏÅþÁ¬ÓëÏȽøÖÆÔì¡°Ò»´øÒ»Æð¡±ÁªºÏʵÑéÊÒ¡·ÁªºÏʵÑéÊÒרÏî¡¶·ÏÆúº¸ÁϵķǽðÊô²ôÔÓîÑ»ùºÏ½ð±¡Ä¤ÐÞÊμ°¹¦Ð§»¯Ó¦Óá·£¬£¬£¬20ÍòÔª ¡£¡£

(3) ¡¶ÃæÏòÖÇÄܺ¸½ÓµÄ¶à³¡ñîºÏÎïÀíÄ£×Ó¹¹½¨ÓëÒªº¦ÊÖÒÕ¡·Ïȵ¼×¨Ïî¡¶TIG¡¢¡¢¡¢PTA¼°Æä¼¤»Ö¸´ºÏµãº¸Àú³Ì¶àÎïÀí³ ¡£¡£¨Èȳ¡¡¢¡¢¡¢Á÷³¡¡¢¡¢¡¢µç´Å³ ¡£¡£©ÊýֵģÄâÑо¿¡·£¬£¬£¬10ÍòÔª ¡£¡£

¿ÆÑÐЧ¹û£¨½üÎåÄ꣩£º£º£º

(1) Qin, B.,   Peng, F.*, et al. Understanding of nitrogen fixation electro catalyzed by   molybdenum-iron carbide through the experiment and theory. Nano Energy 2020,   68, 104374. (Q1, IF = 17.881)

(2) Qin, B.,   Peng, F.*, et al. Efficient   electrochemical reduction of CO2 into CO promoted by sulfur   vacancies. Nano Energy 2019, 60, 43-51. (Q1, IF = 17.881)

(3) Qin, B.,   Peng, F.*, et al. Formation of Lattice-Dislocated Zinc Oxide via Anodic   Corrosion for Electrocatalytic CO2 Reduction to Syngas with a   Potential Dependent CO:H2 Ratio. ACS Appl. Mater. Inter. 2020, 12,   30466-30473. (Q1, IF = 9.229)

(4) Qin, B.,   Peng, F.*, et al. Electrochemical Reduction of CO2 into Tunable   Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn   Catalyst. ACS Appl. Mater. Inter. 2018, 10, 20530-20539. (Q1, IF = 9.229)

(5) Qin, B.,   Peng, F.*, et al. Mechanistic Insights into the Electrochemical Reduction of   CO2 and N2 on the Regulation of a Boron Nitride Defect-Derived   Two-Dimensional Catalyst using Density Functional Theory Calculations. J.   Phys. Chem. Lett., 2021, 12, 7151-7158. (Q1, IF = 6.475)

(6) Qin, B.,   Peng, F.*, et al. Effect of the surface roughness of copper substrate on   three-dimensional tin electrode for electrochemical reduction of CO2   into HCOOH. J. CO2 Util. 2017, 21, 219-223. (Q3, IF = 7.132)

(7) Qin, B.,   Peng, F.*, et al. Mechanistic Insights into the Electrochemical Reduction of   CO2 on Cyclo[18]carbon using Density Functional Theory   Calculations. ChemElectroChem 2020, 7, 1838-1842. (Q3, IF = 4.590)

(8) Cai, X.#; Qin, B.#; Peng, F.*, et al. Chlorine-Promoted   Nitrogen and Sulfur Co-Doped Biocarbon Catalyst for Electrochemical Carbon   Dioxide Reduction. ChemElectroChem 2020, 7, 320-327. (Q3, IF = 4.590, ÅäºÏÒ»×÷)

(9) Huang, J.; Cao, Y.*; Qin, B.; Peng, F.*, et al. Highly   efficient and acid-corrosion resistant nitrogen doped magnetic carbon   nanotubes for the hexavalent chromium removal with subsequent reutilization.   Chem. Eng. J. 2019, 361, 547-558. (Q1, IF = 13.273)

(10)Zhu, W.; Zhao, K.; Liu, S.; Liu, M.; Peng,   F.; An, P.; Qin, B.; Zhou, H.; Li, H.; He, Z.* Low-overpotential   selective reduction of CO2 to ethanol on electrodeposited CuxAuy   nanowire arrays. J. Energy Chem. 2019, 37, 176-182. (Q2, IF = 9.676)


½Ó´ý¾ßÓÐÖÊÁÏ¡¢¡¢¡¢»¯Ñ§¡¢¡¢¡¢ÎïÀíÅä¾°µÄͬÑⱨ¿¼ ¡£¡£


¡¾ÍøÕ¾µØÍ¼¡¿