»ù±¾ÇéÐÎ
Ö÷ÒªÁìÓòΪˮÎÛȾ¿ØÖƹ⻯ѧÊÖÒÕÑо¿¡£Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÏîÄ¿1Ïî¡¢¡¢¡¢Ê¡²¿¼¶ÒÔÉÏÏîÄ¿4Ïî¡¢¡¢¡¢ÊÐÌü¼¶ÏîÄ¿4Ïî¡¢¡¢¡¢ºáÏòÏîÄ¿2Ï£»£»ÒÔµÚÒ»»òͨѶ×÷Õß½ÒÏþSCIÂÛÎÄ41ƪ£¨ÖпÆÔºÒ»ÇøtopÂÛÎÄ36ƪ£¬£¬£¬º¬¶àƪÂÛÎı»Ñ¡ÎªÁÁµãÎÄÕ¼°ÓÅÒìÂÛÎÄ£©¡¢¡¢¡¢ÖÐÎĽ¹µãÂÛÎÄ4ƪ£¬£¬£¬ÆäÖÐÇéÐÎÁìÓò¶¥¿¯16ƪ£¨¾ùΪµ¥Î¨Ò»×÷»òΨһͨѶ£¬£¬£¬º¬5ƪEnvironmental Science & TechnologyºÍ11ƪWater Research£©¡¢¡¢¡¢»¯Ñ§ÁìÓò¶¥¿¯1ƪ£¬£¬£¬¸ß±»ÒýÂÛÎÄ3ƪ£¬£¬£¬SCIËûÒý2000¶à´Î£¬£¬£¬HÒò×Ó28£»£»£»»ñÊÚȨ·¢Ã÷רÀû4ÏʵÏÖת»¯1Ï£»£»£»²©Ê¿Ñ§Î»ÂÛÎı»ÆÀΪ¡°ÖйúÇéÐοÆÑ§Ñ§»áÓÅÒ첩ʿѧλÂÛÎÄ¡±£»£»£»ÈëÑ¡2024Äê¶ÈÈ«Çòǰ2%¶¥¼â¿ÆÑ§¼Ò°ñµ¥£»£»£»Ö¸µ¼Ñ§Éú¼ÓÈë¹ã¶«Ê¡ÏîÄ¿2Ï£¬£¬ÌôÕ½±¹ú¼Ò¼¶Í½±Ö¸µ¼Î÷ϯ£¬£¬£¬Ö÷³Ö½Ì¸ÄÏîÄ¿1Ï£¬£¬½ÒÏþ½Ì¸ÄÂÛÎÄ3ƪ£¨µÚÒ»×÷Õß1ƪ¡¢¡¢¡¢Í¨Ñ¶×÷Õß1ƪ£©¡£

ÁªÏµ·½Ê½
µØµã£º¹ã¶«Ê¡½ÃÅÊÐÅî½Çø¶«³É´å22ºÅ Ò¼ºÅÓéÀÖAPP ÇéÐÎÓ뻯ѧ¹¤³ÌѧԺ
Óʱࣺ529020
ÓÊÏ䣺leoyanghit@126.com
ÊÂÇéÂÄÀú
2019Äê9ÔÂÖÁ2023Äê11Ô£¬£¬£¬Ò¼ºÅÓéÀÖAPP£¬£¬£¬ÉúÎï¿Æ¼¼Óë´ó¿µ½¡Ñ§Ôº£¬£¬£¬¸±½ÌÊÚ£¬£¬£¬Ë¶Ê¿Éúµ¼Ê¦
2023Äê11ÔÂÖÁ½ñ£¬£¬£¬Ò¼ºÅÓéÀÖAPP£¬£¬£¬ÇéÐÎÓ뻯ѧ¹¤³ÌѧԺ£¬£¬£¬¸±½ÌÊÚ£¬£¬£¬Ë¶Ê¿Éúµ¼Ê¦
½ÌÓý¼°Ñ§Ï°ÂÄÀú
2014Äê9ÔÂ-2019Äê7Ô£¬£¬£¬¹þ¶û±õ¹¤Òµ´óѧÇéÐÎѧԺ£¬£¬£¬²©Ê¿
½Ìѧ¿Î³Ì
±¾¿ÆÉú£º¡¶ÇéÐμà²â¡·£»£»£»¡¶ÇéÐμà²âʵÑé¡·£»£»£»¡¶Ë®ÎÛȾ¿ØÖƹ¤³Ì¡·£»£»£»¡¶Ë®ÎÛȾ¿ØÖƹ¤³ÌʵÑé¡·£»£»£»¡¶Éú²úʵϰ¡·µÈ
Ñо¿Éú£º¡¶ÇéÐοÆÑ§ÓëÊÖÒÕÑо¿Ï£Íû¡·
½ÌѧÏîÄ¿
±¾¿Æ¸ßÖÊÁ¿¿Î³Ì½¨ÉèÓëÁ¢Òì´´Òµ½ÌÓý½¨ÉèË¢ÐÂÏîÄ¿£¬£¬£¬¡¶ÇéÐ餳Ì΢ÉúÎïѧ¡·
±¾¿Æ¸ßÖÊÁ¿¿Î³Ì½¨ÉèÓëÁ¢Òì´´Òµ½ÌÓý½¨ÉèË¢ÐÂÏîÄ¿£¬£¬£¬¡¶ÇéÐμà²â¡·
Ö÷ÒªÑо¿Æ«Ïò
Ë®´¦Àí£¨¸ß¼¶£©Ñõ»¯ÊÖÒÕÓ¦ÓÃÑо¿
Ĥ·¨Ë®´¦ÀíÊÖÒÕÑо¿
¹ÜÍøÏû¶¾ÊÖÒÕÑо¿
ÒûÓÃË®ÖÐÖØ½ðÊô¿ØÖÆÊÖÒÕÑо¿
¿ÆÑÐÏîÄ¿
1.¹ú¼Ò×ÔÈ»¿ÆÑ§ÇàÄê»ù½ðÏîÄ¿£¬£¬£¬2022Äê01ÔÂ-2024Äê12Ô£¬£¬£¬30Íò£¬£¬£¬Ö÷³Ö¡£
2.¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¬£¬£¬2025Äê01ÔÂ-2027Äê12Ô£¬£¬£¬10Íò£¬£¬£¬Ö÷³Ö¡£
3.¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¬£¬£¬2023Äê01ÔÂ-2025Äê12Ô£¬£¬£¬10Íò£¬£¬£¬Ö÷³Ö¡£
4.¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¬£¬£¬2022Äê01ÔÂ-2024Äê12Ô£¬£¬£¬10Íò£¬£¬£¬Ö÷³Ö¡£
5.¹ã¶«Ê¡Í¨Ë׸ßÐ£ÖØµãÁìÓòÏîÄ¿£¬£¬£¬2024Äê10ÔÂ-2027Äê10Ô£¬£¬£¬10Íò£¬£¬£¬Ö÷³Ö¡£
6.¹ã¶«Ê¡Í¨Ë׸ßУÇàÄêÁ¢ÒìÈ˲ÅÏîÄ¿£¬£¬£¬2021Äê01ÔÂ-2022Äê12Ô£¬£¬£¬5Íò£¬£¬£¬Ö÷³Ö£¨ÒѽáÌ⣬£¬£¬½áÌâÆÀ¼ÛÓÅÒ죩¡£
7.¹ú¼ÒÖØµãʵÑéÊÒ¿ª·Å¿ÎÌâÃæÉÏÏîÄ¿£¬£¬£¬2022Äê01ÔÂ-2024Äê12Ô£¬£¬£¬5Íò£¬£¬£¬Ö÷³Ö¡£
8.½ÃÅÊлù´¡ÓëÓ¦Óûù´¡Ñо¿ÖصãÏîÄ¿£¬£¬£¬2024Äê01ÔÂ-2026Äê12Ô£¬£¬£¬5Íò£¬£¬£¬Ö÷³Ö¡£
9.½ÃÅÊлù´¡ÓëÀíÂÛ¿ÆÑ§Ñо¿Àà¿Æ¼¼ÍýÏëÏîÄ¿£¬£¬£¬ 2020Äê06ÔÂ-2022Äê05Ô£¬£¬£¬10Íò£¬£¬£¬Ö÷³Ö£¨ÒѽáÌ⣩¡£
10.Ò¼ºÅÓéÀÖAPP¸ßÌõÀíÈ˲ſÆÑÐÆô¶¯ÏîÄ¿£¬£¬£¬2019Äê08ÔÂ-2024Äê08Ô£¬£¬£¬100Íò£¬£¬£¬Ö÷³Ö¡£
½ÒÏþѧÊõÂÛÎÄ
1. Li J, Yang T*, Zeng G, An L, Jiang J, Ao Z, Ma J. Ozone- and Hydroxyl Radical-Induced Degradation of Micropollutants in a Novel UVA-LED-Activated Periodate Advanced Oxidation Process. Environmental Science & Technology, 2023, 57, 47, 18607-18616. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º11.4£©
2. Yang T, Mai J, Zhu M, Peng Q, Huang C, Wu S, Tan Q, Jia J, Fang J*, Ma J*. Enhanced Permanganate Activation under UVA-LED Irradiation: Unraveled Mechanism Involving Manganese Species and Hydroxyl Radical. Environmental Science & Technology, 2022, 56, (24), 17720-17731. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º11.4£©
3. Yang T*, Mai J, Cheng H, Zhu M, Wu S, Tang L, Liang P, Jia J, Ma J*. UVA-LED-Assisted Activation of the Ferrate(VI) Process for Enhanced Micropollutant Degradation: Important Role of Ferrate(IV) and Ferrate(V). Environmental Science & Technology, 2022, 56, (2), 1221-1232. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º11.4£©
4. Yang T, Wu S, Liu C, Liu Y, Zhang H, Cheng H, Wang L, Guo L, Li Y, Liu M-C*, Ma J*. Efficient degradation of organoarsenic by UV/chlorine treatment: Kinetics, mechanism, enhanced arsenic removal, and cytotoxicity. Environmental Science & Technology, 2021, 55, (3), 2037-2047. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º11.4£©
5. Yang T, Wang L*, Liu Y, Jiang J, Huang Z, Pang S-Y, Cheng H, Gao D, Ma J*. Removal of organoarsenic with ferrate and ferrate resultant nanoparticles: Oxidation and adsorption. Environmental Science & Technology, 2018, 52, (22), 13325-13335. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º11.4£¬£¬£¬ÁÁµãÎÄÕ£©
6. An L, Kong X, Jiang M, Li W, Lv Q, Hou X, Liu C, Su P, Ma J, Yang T*. Photo-assisted natural chalcopyrite activated peracetic acid for efficient micropollutant degradation. Water Research, 2024, 257, 121699. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
7. Zhang H, Jiang M, Su P, Lv Q, Zeng G, An L, Ma J, Yang T*. Novel sunlight-induced monochloramine activation system for efficient microcontaminant abatement. Water Research, 2024, 258, 121798. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
8. Zhang H, Jiang, M, Su P, Lv Q, Zeng G, An L, Cao J, Zhou Y, Snyder S. A, Ma J, Yang T*. Refinement of kinetic model and understanding the role of dichloride radical (Cl2??) in radical transformation in the UV/NH2Cl process. Water Research, 2024, 254, 121440. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
9. Yang T*, An L, Zeng G, Mai J, Li Y*, Lian J, Zhang H, Li J, Cheng* X, Jia J, Liu M, Ma J. Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate. Water Research, 2023, 243, 120401. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
10. Yang T*, Huang C, An L, Zeng G, Li J, Liu C, Xu X, Jia J, Ma J. The overlooked role of Cr(VI) in micropollutant degradation under solar light irradiation. Water Research, 2023, 242, 120309. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
11. Yang T, An L, Zeng G, Jiang M, Li J, Liu C, Jia J, Ma J. Efficient removal of p-arsanilic acid and arsenite by Fe(II)/peracetic acid (Fe(II)/PAA) and PAA processes. Water Research, 2023, 241, 120091. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
12. Yang T, Zhu M, An L, Zeng G, Fan C, Li J*, Jiang J, Ma J. Photolysis of chlorite by solar light: An overlooked mitigation pathway for chlorite and micropollutants. Water Research, 2023, 233, 119809. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
13. Yang T*, Mai J, Wu S, Luo W, Zhu M, Liang P, Guo L, Chen J, Jia J, Ma J*. Insight into enhanced activation of permanganate under simulated solar irradiation: Rapid formation of manganese species. Water Research, 2021, 205, 117669. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
14. Yang T, Liu Y, Wang L*, Jiang J, Huang Z, Pang S-Y, Cheng H, Gao D, Ma J*. Highly effective oxidation of roxarsone by ferrate and simultaneous arsenic removal with in situ formed ferric nanoparticles. Water Research, 2018, 147, 321-330. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
15. Yang T, Wang L*, Liu Y, Huang Z, He H, Wang X, Jiang J, Gao D, Ma J*. Comparative study on ferrate oxidation of BPS and BPAF: Kinetics, reaction mechanism, and the improvement on their biodegradability. Water Research, 2019, 148, 115-125. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
16. Haochen Zhang, Peng Su, Maoju Jiang, Chenlong Liu, Qixiao Lv, Wenqi Li, Xiangyang Hou , Shuo Li*, Bin Zhang , Bei Zhang , Jun M, Tao Yang *. Efficient Permanganate Activation under UV 222 nm Irradiation for Enhanced Pollutant Abatement. Water Research, 2025, Just Accepted. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
17. Wu Y, Liang G, Li W B, Zhong X.-F, Zhang Y.-Y, Ye J.-W, Yang T*, Mo Z-W*, Chen X-M. Boosting Degradation of Antibiotics via Peroxymonosulfate Activation with a Cu-based Metal-Organic Framework. Chemical Science, 2024, 15, 9733-9741. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º8.4£©
18. Yang T*, Jiang M, Su P, Lv Q, Li W, Liu C, Zhang B*, Zhang H, Zang L*, Liu M, Ma J. Enhanced peracetic acid activation under Far-UVC Radiation: Micropollutant degradation and radical assessment. Chemical Engineering Journal, 2024, 502, 158064. (ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1)
19. Li J, Jiang M, Su P, Lv Q, An L, Zeng G, Hou X, Li W, Chen C, Ma J, Yang T*. Generation of ?OH and intermediate manganese species for the efficient removal of micropollutants via photocatalysis of permanganate by indium oxide. Chemical Engineering Journal, 2024, 483, 149084£¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1£©
20. Mai J, Zeng G, An L, Jiang M, Su P, Lv Q, Hou X, Kong X, Jia J, Yang T*, Ma J. Singlet oxygen is also involved in the formation of hypoiodous acid during the transformation of phenolic pollutants by peracetic acid in the presence of iodide. Chemical Engineering Journal, 2023, 476, 146725£¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1£©
21. Zeng G, Mai J, An L, Huang C, Li J, Wang H, Li Q, Yang J, Xu X, Liu C, Jia J, Yang T*, Ma J. Insight into wavelength-dependent UVA-LED/chlorine process for micropollutant degradation: Performance, mechanism, and effects of water matrix. Chemical Engineering Journal, 2023, 471, 144317. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1£©
22. Zhang H, Zhu Z, Zhou X, Tang B, Yu J, Zhang B, Ma J*, Yang T*. Degradation of ibuprofen by the UV/chlorine/TiO2 process: Kinetics, influencing factor simulation, energy consumption, toxicity and byproducts. Chemical Engineering Journal, 2022, 450, 137849. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1£©
23. Yang T #,*, Wu S #, Mai J, Chen L, Huang C, Zeng G, Wu Y, Zhu M, Huang Y, Mo Z, Guo L, Jia J, Ma J*. Activation of ferrate(VI) by sulfite for effectively degrading iodinated contrast media and synchronously controlling I-DBPs formation. Chemical Engineering Journal, 2022, 442, 136011. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1£©
24. Yang T, Wang L*, Liu Y-L, Zhang W, Cheng H-J, Liu M-C, Ma J*. Ferrate oxidation of bisphenol F and removal of oxidation products with ferrate resulted particles. Chemical Engineering Journal, 2020, 383, 123167. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1£©
25. Zeng G, An L, Jiang M, Li W, Hou X, Su P, Liu M, Cheng H, Long Z*, Yang J, Ma J, Yang T*. Novel catalyst-free activation of chlorine by visible light for micropollutant abatement. Journal of Hazardous Materials, 2024, 480, 136084. (ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.2)
26. Yang, T.; Zeng, G.; Jiang, M.; Su, P.; Liu, C.; Lv, Q.; Li, W.; Hou, X.; Li, J., Matching periodate peak absorbance by far UVC at 222 nm promotes the degradation of micropollutants and energy efficiency. Journal of Hazardous Materials 2024, 476, 134978. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º15.1£©
27. Li J#, Cao J#, Jiang M, An L, Zeng G, Mai J, Su P, Jing B, Feng M, Ao Z, Ma J, Yang T*. Role of bipyridyl in enhancing ferrate oxidation toward micropollutants. Journal of Hazardous Materials, 2024, 469, 133982. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º13.6£©
28. Mai J, Yang T*, Ma J. Novel solar-driven ferrate(VI) activation system for micropollutant degradation: Elucidating the role of Fe(IV) and Fe(V). Journal of Hazardous Materials, 2022, 437, 129428. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º13.6£©
29. Wu S#, Yang T#,*, Mai J, Tang L, Liang P, Zhu M, Huang C, Li Q, Cheng X, Liu M, Ma J*. Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic. Journal of Hazardous Materials, 2022, 422, 126820. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º13.6£¬£¬£¬Äê¶ÈÓÅÒìÂÛÎÄ£©
30. Huang C# , Yang T#,*, Li M, Mai J, Wu S, Li J, Ma G, Liu C, Jia J, Ma J*. Generation of Hydroxyl Radicals via Activation of Cr(VI) by UVA-LED for Rapid Decontamination: The Important Role of Cr(V). Journal of Hazardous Materials, 2022, 129913.£¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º13.6£©
31. Mai J#, Ge Zeng G#, Jiang M, Su1 P, Lv Q, Li W, Hou X, Liu M, Ma J, Yang T*. Unraveling the Role of Mn(V)/Mn(III) in the Enhanced Permanganate Oxidation under Vis-LED Radiation, Science of The Total Environment, 2024, 944, 173655. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º9.8£©
32. Song W, Gao Z, Hou C, Cheng X*, Lian J, Yang T*, Zhou Z, Wu D, Liang H. Improving ultrafiltration of algae-laden water with chitosan quaternary ammonium salt enhanced by sodium percarbonate. Science of The Total Environment, 2023, 888, 164235. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º9.8£©
33. Yang T, Mai J, Wu S, Liu C, Tang L, Mo Z, Zhang M, Guo L, Liu M-C*, Ma J*. UV/chlorine process for degradation of benzothiazole and benzotriazole in water: Efficiency, mechanism and toxicity evaluation. Science of The Total Environment, 2021, 760, 144304. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º9.8£©
34. Ma, R.; Cheng, X.; Luo, X.; Yang, T*; Wu, D.; Liang, H., Comparison of chlorine and peroxymonosulfate in enhancing vacuum ultraviolet for treating secondary effluent to mitigate ultrafiltration membrane fouling. Separation and Purification Technology 2025, 353, 128493. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º8.6£©
35. Gao M, Zhang J*, Zhao L, Geng C, Zhao F*, Yang T*, Ma J. Insights into Co3O4 nano-rod/peroxymonosulfate catalytic oxidation system for chemical cleaning ultrafiltration membrane: Performance, mechanisms, and effects on the membrane stability. Separation and Purification Technology, 2024, 330, 125375. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º8.6£©
36. Cheng X#, Lian J#, Jiang M, An L, Fan Q, Zeng G, Su P, Wu Y, Ma J, Yang T*. Unraveling the role of CH3C(=O)OO? in the degradation of emerging organic contaminants via boosting activation of peracetic acid by iron oxychloride catalyst. Separation and Purification Technology, 2024, 125535. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º8.6£©
37. Song W, Gao Z, Tan F, Cheng X*, Yang T*, Wu D, Yang J, Liang H. Calcium sulfite oxidation activated by ferrous iron integrated with membrane filtration for removal of typical algal contaminants. Chemosphere, 2023, 333, 138956. £¨ÖпÆÔº¶þÇø£¬£¬£¬IF£º9.8£©
38. Cheng X, Song W, Tan F, Luo X, Zhu X*, Yang T*, Wu D, Liang H. Novel calcium hypochlorite/ferrous iron as an ultrafiltration membrane pretreatment process for purifying algae-laden water. Environmental Research, 2023. £¨ÖпÆÔº¶þÇø£¬£¬£¬IF£º8.3£©
39. An, M.; Cheng, X.; Luo, X.; Yang, T*; Sun, X.; Xu, J.; Xiao, D.; Wu, D.; Liang, H., Role of reactive manganese and oxygen species in the KMnO4/Na2SO3 process for purification of algal-rich water and membrane fouling alleviation. Environmental research 2024, 260, 119662.£¨ÖпÆÔº¶þÇø£¬£¬£¬IF£º8.3£©
40. Liu Y, Yang T, Wang L*, Huang Z, Li J, Cheng H, Jiang J, Pang S, Qi J, Ma J*. Interpreting the effects of natural organic matter on antimicrobial activity of Ag2S nanoparticles with soft particle theory. Water Research, 2018, 145, 12-20. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º12.8£©
41. Cheng H, Yang T, Ma J*, Jiang J*, Wang P. The aggregation kinetics of manganese oxides nanoparticles in Al(III) electrolyte solutions: Roles of distinct Al(III) species and natural organic matters. Science of The Total Environment, 2020, 744, 140814. £¨ÖпÆÔºÒ»Çøtop£¬£¬£¬IF£º9.8£©
ÉêÇë¼°ÊÚȨרÀû
1.ÑîÌÎ, Îâ˼˼, ÁõÃô³¬, Û£½¨²¨, ¹ùÁÕ, ÀîÓñçø, ÍôÌÎ, Áõ³¤Óî. Ò»ÖÖÈ¥³ýË®ÖÐÓлúÎÛȾÎïµÄÒªÁì, 2020, רÀûºÅ£ºZL202010488431.2. £¨ÒÑʵÏÖרÀûת»¯£©
2.ÑîÌÎ, Îâ˼˼, ÁõÃô³¬, Û£½¨²¨, ÀîÓñçø, ·½ÀñÄþ. Ò»ÖÖº¬ÓÐÓлúÉé·ÏË®µÄ´¦ÀíÒªÁì, 2019, ÉêÇëºÅ£º201911272133.3.
3.ÑîÌÎ, Âó¼ÎÃô, Îâ˼˼, ÁõÃô³¬, ÍôÌÎ, ¹ùÁÕ, ÀîÓñçø, »Æ´ä, ÖìÃÎÑô. Ò»ÖÖÈ¥³ýÎÛË®ÖÐÓлú΢ÎÛȾÎïµÄÒªÁì, 2021, ÉêÇëºÅ£ºCN202011532563.7.
4.Âí¾ü, »Æ×¯ËÉ, ½½ø, ÁõÓñÀÙ, ÑîÌÎ, Ф¼ÑÔÂ. Ò»ÖÖʹÓøßÌúËáÑÎÇ¿»¯³ôÑõÑõ»¯È¥³ýË®ÖÐÓлúÎÛȾÎïµÄÒªÁì, 2015, ÉêÇëºÅ£ºZL201710122408.X.
»ñ½±ÇéÐÎ
ÈëÑ¡2024Äê¶ÈÈ«Çòǰ2%¶¥¼â¿ÆÑ§¼Ò°ñµ¥
2020ÄêÈÙ»ñÖйúÇéÐοÆÑ§Ñ§»áÓÅÒ첩ʿѧλÂÛÎÄ£¨ÌìϽö11ƪ£©
ÈÙ»ñµÚÊ®¶þ½ìÇéÐ餳ÌÇàÄêÂÛ̳ÓÅÒ챨¸æ½±
µÚ°Ë½ì¡°»¥ÁªÍø+¡±´óѧÉúÁ¢Òì´´Òµ´óÈü£¨2022£©£¬£¬£¬¹ú¼ÒÈýµÈ½±£¨Ö¸µ¼Î÷ϯ£©
Ò¼ºÅÓéÀÖAPP¡°»¥ÁªÍø+¡±´óѧÉúÁ¢Òì´´Òµ´óÈü£¬£¬£¬Ð£¼¶Ò»µÈ½±2Ïָµ¼Î÷ϯ£©
Ö¸µ¼Ñ§ÉúÏîÄ¿
2023Äê¹ã¶«Ê¡¡°ÅÊÔµÍýÏ롱ÏîÄ¿£¨Ö¸µ¼Î÷ϯ£©
2023Äê¹ã¶«ÇàÄê´óѧÉú¡°°ÙÍòÍò¡±¹¤³ÌÏîÄ¿£¨Ö¸µ¼Î÷ϯ£©
2023Äê¹ã¶«Ê¡ÊîÆÚÉç»áʵ¼ùÈýÏÂÏçÖØµãÍŶӣ¨Ö¸µ¼Î÷ϯ£©
2022Äê¹ã¶«Ê¡ÊîÆÚÉç»áʵ¼ùÈýÏÂÏçУ¼¶ÖصãÍŶӣ¨Ö¸µ¼Î÷ϯ£©
2021-2024´óѧÉúÁ¢Òì´´ÒµÏîÄ¿6Ïָµ¼Î÷ϯ£©
½ÌѧÇéÐÎ
Ö÷³ÖÒ¼ºÅÓéÀÖAPP±¾¿Æ¸ßÖÊÁ¿¿Î³Ì½¨ÉèÏîÄ¿1Ïî
УÓÅÒì±¾¿ÆÑ§Î»ÂÛÎÄ2ƪ£¨Ö¸µ¼Î÷ϯ£©
УÓÅÒì˶ʿѧλÂÛÎÄ2ƪ£¨Ö¸µ¼Î÷ϯ£©
УÓÅÒì˶ʿ½áÒµÉú2ÈË£¨Ö¸µ¼Î÷ϯ£©
ÑîÌΣ¬£¬£¬¹ùÁÕ£¬£¬£¬ÀîÓñçø*£¬£¬£¬µØ·½Ó¦ÓÃÐͱ¾¿ÆÔºÐ£»£»£ÇéÐμà²â½Ìѧˢгõ̽¡ªÒÔÒ¼ºÅÓéÀÖAPPΪÀý£¬£¬£¬½ÌÓý½ÌѧÂÛ̳£¬£¬£¬2024.£¨½Ì¸ÄÂÛÎÄ£©
ÀîÓñçø£¬£¬£¬Û£½¨²¨£¬£¬£¬ÑîÌÎ*£¬£¬£¬ÇéÐ餳Ì΢ÉúÎïѧºÍʵÑé¿ÎµÄ½ÌѧˢÐÂ̽Ë÷£¬£¬£¬½ÌÓý½ÌѧÂÛ̳£¬£¬£¬2025.£¨½Ì¸ÄÂÛÎÄ£©