壹号娱乐APP

袁仕芳

宣布时间:: 2016-05-09

【基本情形】

袁仕芳,,,男,,,湖南洞口人,,,博士、、教授、、硕士生导师,,,广东省盘算数学会理事。。2002年9月-2005年6月,,,湖南大学数学与计量经济学院攻读盘算数学专业硕士学位,,,2005年9 月-2008年6月,,,湖南大学数学与计量经济学院攻读博士学位。。2008年5月进入入壹号娱乐APP数学与盘算科学学院从事教学和科研事情。。2010年评为副教授。。2010年12月-2013年5月上海大学理学院博士后出站。。2015年评为教授。。主要社会兼职::美国数学谈论《Math Review》谈论员;《Appl. Math.Comput.》《ISRN Computational Mathematics》《Linear Multilinear Algebra》和《J Appl Math Comput》等海内外刊物审稿专家。。

壹号娱乐app官网(中国)官方版下载



联系方式

邮箱::yuanshifang305@163.com

主讲课程

主要承当本科生《数值剖析》《高等数学》《概率论和数理统计》研究生《数值代数》《盘算要领》《数学教学设计与案例剖析》等专业基础课和偏向课程。。

主要研究偏向

数值代数、、矩阵理论及其应用。。

教学项目

1、、作为指导西席获2012天下大学生数学建模竞赛广东省二等奖,,,2013年天下大学生数学建模竞赛广东省三等奖,,,2014年天下大学生数学建模竞赛广东省三等奖,,,2015年天下研究生数学建模竞赛三等奖。。作为指导西席获2012广东省立异创业训练妄想项目1项,,,完成壹号娱乐APP教改项目1项,,,在研壹号娱乐APP学位与研究生教育刷新研究项目1项。。

2、、2009年9月获壹号娱乐APP优异西席称呼。。

科研项目】(部分

1、、主持广东省自然科学基金2项;江门市社会开展类科技攻关项目2项;作为主要成员加入国家自然科学基金项目2项,,,厅级项目2项。。

2、、先后自力或以第一作者身份在、、《 Journal of the Franklin Institute》《Numer. Algorithms》《Comput. Math.Appl.》《Math. Comput. Model.》《Linear Multilinear Algebra》《Electron. J. Linear Algebra》《盘算数学》《数学物理学报》等海内外学术期刊揭晓论文30多篇,,,其中已被SCI收录13篇,,,EI收录4篇,,,ISTP收录4篇。。

揭晓学术论文】(部分

[1] Yuan Shi-Fang,Wang Qing-Wen. L-structured quaternion matrices and quaternion linear matrix equations. Linear and Multilinear Algebra. 2016. 64 (2). 321-339 (SCI)

[2] Yuan Shi-Fang, Liao An-Ping, Wang Peng. Least squares?η-bi-Hermitian problems of the quaternion matrix equation (AXB,CXD) = (E,F). Linear and Multilinear Algebra. 2015. 63(9). 1849-1863 (SCI)

[3] Yuan Shi-Fang, Liao An-Ping.Least squares Hermitian solution of the complex matrix equationAXB+CXD=E with the least norm. Journal of the Franklin Institute 351 (2014) 4978–4997(SCI、、EI)

[4] Yuan Shi-Fang, Wang Qing-Wen, Xiong Zhi-Ping. Least squares $eta$-Hermitian solution of quaternion matrix equation A^H XA+B^H YB =C. Filomat 28:6 (2014), 1153–1165 (SCI)

[5] Yuan Shi-Fang. Least squares pure imaginary solution and real solution of the quaternion matrix equation AXB+CXD=E with the least norm. Journal of Applied Mathematics. 2014.Volume 2014. Article ID 857081, 9 pages (SCI)

[6] Yuan Shi-Fang,Wang Qing-Wen, Xiong Zhi-Ping. Linear parameterized inverse eigenvalue problem of bisymmetric matrices. Linear Algebra and its Applications. 2013. 439. 1990–2007 (SCI、、EI)

[7] Yuan Shi-Fang, Wang Qing-Wen. On solutions of the quaternion matrix equation AX = B and their applications in color image restoration. Applied Mathematics and Computation. 221(15. 2013. 10–20 (SCI、、EI)

[8] Yuan Shi-Fang, Wang Qing-Wen,,,Zhang Xiang . Least-squares problem for the quaternion matrix equation AXB + CYD = E over different constrained matrices. International Journal of Computer Mathematics. 2013. 903. 565–576 (SCI)

[9] Shifang Yuan. Research on Least Squares Problems of A Quaternion Matrix Equation International Journal of Advancements in Computing Technology(IJACT) Volume5, Number7,April 2013,613-620 (EI)

[10] Yuan Shi-Fang, Liao An-Ping,,,Yao Guo-Zhu. Parameterized inverse singular value problem for antibisymmetric matrices. Numerical Algorithms. 2012. 60. 501-522 (SCI)

[11] Yuan Shi-Fang, Wang Qing-Wen. Two kinds of least squares solutions for the quaternion matrix equation AXB+ CXD = E. Electronic Journal of Linear Algebra. 2012. 23. 257-274 (SCI)

[12] Yuan Shi-Fang. Least squares η - Hermitian solution for quaternion matrix equation AXB = C. Communications in Computer and Information Science. 2012. 307. 300-305. (EI)

[13] Yuan Shi-Fang, Liao An-Ping. Least squares solution of quaternion matrix equation X-AXB=C with the least norm. Linear and Multilinear Algebra. 2011. 59 (9). 985-998 (SCI)

[14] Yuan Shi-Fang, Liao An-Ping, YaoGuo-Zhu. The matrix nearness problem associated with the quaternion matrix equation AXA^H+BYB^H=C. Journal of Applied Mathematics and Computing. 2011. 37. 133–144 (EI)

[15] Shifang Yuan and Handong Cao, Least squares skew bisymmetric solution for a kind of quaternion matrix equation, Applied Mechanics and Materials Vols. 50-51 (2011) pp 190-194(EI)

[16] 袁仕芳,,,廖安平,,,段雪峰. 四元数矩阵方程AXB=C 的三对角Hermite 极小范数最小二乘解和三对角双Hermite 极小范数最小二乘解. 高等学校盘算数学学报. 2010.32(4). 353-368

[17] Shi-Fang Yuan An-Ping Liao Least squares anti-Hermitian solution of the quaternion matrix equation AXB =C with the least norm Proceedings of the Eighth International Conference on Matrix Theory and Its Applications in China 2010

[18] Shi-Fang Yuan and Wei Liu Least squares bisymmetric solution of the quaternion matrix equation AXB =C with the least norm Proceedings of the Eighth International Conference on Matrix Theory and Its Applications in China 2010

[19] 袁仕芳,,,廖安平,,,雷渊. 四元数体上Hermite 矩阵的最小化问题. 数学物理学报.2009. 29A(5). 1298-1306

[20] Shi-Fang Yuan. A Class of Inverse Eigenvalue Problems for Five Diagonal Bisymmetric Matrices Proceeding of International Conference of Modelling and Simulation 2009(ISTP收录)

[21] Shi-Fang Yuan, An-Ping Liao. Inverse Eigenvalue Problems of five diagonal symmetric matrices,,,Proceeding of International Conference of Modelling and Simulation 2009(ISTP收录)

[22] 袁仕芳,四元数体上广义T oeplitz 矩阵反问题,吉首大学学报( 自然科学版),2009,30 (1):30-32

[23] 袁仕芳, 一类四元数矩阵方程的反Hermite极小范数最小二乘解四川理工学院学报( 自然科学版),2009,22 (4):25-28

[24] Yuan Shi-Fang, Liao An-Ping, Lei Yuan. Least squares Hermitian solution of the matrix equation (AXB,CXD)=(E,F) with the least norm over the skew field of quaternions. Mathematical and Computer Modelling. 2008. 48. 91-100(SCI、、EI)

[25] Yuan Shi-Fang, liao An-Ping, Lei Yuan. Inverse eigenvalue problems of tridiagonal symmetric matrices and tridiagonal bisymmetric matrices, Computers and Mathematics with Applications. 2008. 55. 2521-2532 (SCI、、EI)

[26] Shi-Fang Yuan,,, An-Ping Liao,,, Least squares anti-Hermitian solution of the matrix equation AXB+CXD=E with the least norm over the quaternion field,,,Proceedings of the Eighth International Conference on Matrix Theory and Its Applications in China 2008(ISTP收录)

[27] Yuan Shifang, Liao Anping,,,Liu Wei. On solution of quaternion matrix equation AXB+CYD=E. Far East Journal of Applied Mathematics, 2008. 33(3). 369-385

[28] 袁仕芳, 廖安平, 雷渊. 矩阵方程AXB+CYD=E 的对称极小范数最小二乘解. 盘算数学. 2007. 29 (2). 203-216.

[29] 袁仕芳, 廖安平, 矩阵方程(AX,,,XB)=(C,,,D)的反中心对称解及其最佳迫近,,,数学理论与应用,,,2005,25(1):86-90



【网站地图】