Ò»¡¢¡¢»ù±¾ÇéÐÎ
(Ò»)ÍŶӼò½é£º£º ±¾ÍŶÓÖ÷ÒªÖÂÁ¦ÓÚÑо¿»ý·Ö΢·Ö·½³ÌÎÊÌâ¸ß¾«¶ÈÊýÖµ½â·¨£¬£¬Îª¿ÆÑ§Ó빤³ÌÅÌËãÌṩ¿É¿¿µÄËã·¨¼°ÀíÂÛÒÀ¾Ý, ͬʱ̽Ë÷Ñо¿Ïà¹ØÎÊÌâÔÚÐÅÏ¢´¦Àí¡¢¡¢Í¼ÐÎͼÏñ´¦Àí¡¢¡¢½ðÈÚÊýѧµÈѧ¿ÆÖеÄÈô¸ÉÓ¦Óᣡ£¡£Ö÷ÒªÑо¿Æ«Ïò°üÀ¨£º£º£¨1£©»ý·Ö΢·Ö·½³ÌÊýÖµ½â£»£¨2£©ÊýÖµ´úÊýºÍ¾ØÕóÀíÂÛ£»£¨3£©Êý×ÖͼÏñ´¦ÀíÓëģʽʶ±ð£»(4 ) ·çÏÕ»³±§¼°ÆäÓ¦Óᣡ£¡£±¾ÍŶÓÏÖÓгÉÔ±5ÈË£¬£¬ÆäÖнÌÊÚ2ÈË¡¢¡¢¸±½ÌÊÚ1ÈË£¬£¬¾ßÓв©Ê¿Ñ§Î»5ÈË£¬£¬45ËêÒÔÉÏÎ÷ϯռ±È80%¡£¡£¡£ÏȺóÖ÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÏîÄ¿¡¢¡¢¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÏîÄ¿ÒÔ¼°ÆäËûÊ¡Ìü¼¶20ÓàÏî¡£¡£¡£ÔÚ¡¶Applied Mathematics Letters¡·¡¶Mathematical Methods in the Applied Sciences¡·¡¶Linear Algebra and its Applications¡·¡¶Applied Numerical Mathematics¡·¡¶Electronic Research Archive¡·ºÍ¡¶IEEE Transactions on Geoscience and Remote Sensing¡·µÈº£ÄÚÍâ×ÅÃû½ÒÏþÂÛÎİÙÓàÆª£¬£¬ÆäÖÐSCIÊÕ¼60ÓàÆª£¬£¬SCI¶þÇøÒÔÉÏÂÛÎÄ30ÓàÆª¡£¡£¡£
£¨¶þ£©ÍŶÓÈÏÕæÈ˼ò½é
ÐÜ־ƽ£¬£¬ÄУ¬£¬1979Äê12ÔÂÉú£¬£¬²©Ê¿£¬£¬½ÌÊÚ£¬£¬Ë¶Ê¿Éúµ¼Ê¦£¬£¬¹ã¶«Ê¡ÅÌËãÊýѧ»áÀíÊ£¬£¬ÃÀ¹úÊýѧ̸ÂÛ¡¶Math Review¡·Ì¸ÂÛÔ±£¬£¬Ò¼ºÅÓéÀÖAPP¡°ÏȽø¿ÆÑÐÊÂÇéÕß¡±£¬£¬²©Ê¿½áÒµÓÚÀ¼ÖÝ´óѧ£¬£¬Ö÷ÒªÑо¿Æ«ÏòΪÊýÖµÏßÐÔ´úÊýºÍ¹ãÒåÄæµÄÀíÂÛ¼°ÆäÓ¦Óᣡ£¡£Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄê¿ÆÑ§»ù½ðÏîÄ¿1Ï£¬Ö÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÌìÔªÇàÄê»ù½ðÏîÄ¿1Ï£¬Ö÷³Ö¹ã¶«Ê¡ÓÅÒìÇàÄêÎ÷ϯÍýÏëÏîÄ¿1Ï£¬Ö÷³Ö¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿1Ï£¬Ö÷³Ö¹ã¶«Ê¡½ÌÓýÌüÓýÃ繤³Ì»ù½ðÏîÄ¿1Ï£¬Ö÷³Ö¹ã¶«Ê¡½ÌÓýÌü¸ßÐ£ÌØÉ«Á¢Òì»ù½ðÏîÄ¿1Ï£¬ ×÷ΪÖ÷Òª³ÉÔ±¼ÓÈë¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿2Ï£¬¼ÓÈëÊ¡¡¢¡¢²¿¼¶ÒÔÉÏ¿ÆÑÐÏîÄ¿13Ïî¡£¡£¡£½üÄêÀ´£¬£¬ÔÚ¡¶Appl.Math.Letter¡·¡¶Comput. Math. Appl¡·¡¶J.Optim.Theory.Appl¡·¡¶Appl. Math. Comput¡·¡¶Linear and Multilinear Algebra¡·µÈ¹ú¼Ê×ÅÃûѧÊõÆÚ¿¯ÉϽÒÏþѧÊõÂÛÎÄ70ÓàÆª£¬£¬ÆäÖÐSCIÊÕ¼40ÓàÆª£¬£¬EIÊÕ¼10ÓàÆª¡£¡£¡£
£¨Èý£©ÍŶÓÖ÷¸É³ÉÔ±½éÉÜ£º£º
Ô¬ÊË·¼£¬£¬ÄУ¬£¬1972Äê11ÔÂÉú£¬£¬²©Ê¿¡¢¡¢½ÌÊÚ¡¢¡¢Ë¶Ê¿Éúµ¼Ê¦£¬£¬¹ã¶«Ê¡ÅÌËãÊýѧ»áÀíÊ£¬£¬ÃÀ¹úÊýѧ̸ÂÛ¡¶Math Review¡·Ì¸ÂÛÔ±¡£¡£¡£²©Ê¿½áÒµÓÚºþÄÏ´óѧ£¬£¬Ö÷Òª´ÓÊÂÊýÖµ´úÊý¡¢¡¢¾ØÕóÀíÂÛ¼°ÆäÓ¦Óᣡ£¡£Ö÷³ÖÍê³É¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ð2Ï£¬½ÃÅÊÐÉç»á¿ªÕ¹Àà¿Æ¼¼¹¥¹ØÏîÄ¿2Ï£¬×÷ΪÖ÷Òª³ÉÔ±¼ÓÈë¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÏîÄ¿¡¢¡¢Ê¡Ìü¼¶ÏîÄ¿¶àÏî¡£¡£¡£ÔÚ¡¶ Journal of the Franklin Institute¡·¡¶Numerical Algorithms¡·¡¶Applied Mathematics and Computation¡·¡¶Computers and Mathematics with Applications¡·¡¶Mathematical Methods in the Applied Sciences¡·¡¶Linear Algebra and its Applications¡·¡¶ÅÌËãÊýѧ¡·¡¶ÊýѧÎïÀíѧ±¨¡·µÈº£ÄÚÍâÖ÷ҪѧÊõÆÚ¿¯½ÒÏþÂÛÎÄ40¶àƪ£¬£¬ÆäÖÐSCIÊÕ¼½ü30ƪ¡£¡£¡£
Ö£³ÉÓ£¬£¬ÄУ¬£¬1978Äê11ÔÂÉú£¬£¬²©Ê¿£¬£¬¸±½ÌÊÚ£¬£¬Ë¶Ê¿Éúµ¼Ê¦£¬£¬Êý¾Ý¿ÆÑ§Óë´óÊý¾ÝÊÖÒÕרҵÈÏÕæÈË£¬£¬ÖйúÅÌËã»úѧ»á¸ß¼¶»áÔ±£¬£¬¹ã¶«Ê¡´óÊý¾ÝרҵίԱ»á¼°È˹¤ÖÇÄÜרҵίԱ»áίԱ¡£¡£¡£²©Ê¿½áÒµÓÚ»ªÖпƼ¼´óѧ£¬£¬ÃÀ¹ú½Ü¿ËÑ·ÖÝÁ¢´óѧ¹«ÅÉ»á¼ûѧÕß¡£¡£¡£Ö÷Òª´ÓÊÂģʽʶ±ð¡¢¡¢»úеѧϰµÈÁìÓòµÄÑо¿£¬£¬ÏÖÔÚÖ÷ÒªÑо¿Æ«ÏòΪ¸ß¹âÆ×ͼÏñ½â»ìÓë·ÖÀà¡¢¡¢ »ùÓÚÌ«ºÕ×ȵÄÖвÝÒ©¼°Ê³²ÄÅбðÑо¿¡£¡£¡£½ÒÏþÂÛÎÄ40ÓàÆª£¬£¬ÆäÖÐÈý´óË÷ÒýÂÛÎÄ20ƪ¡£¡£¡£»ñ¹ú¼Ò·¢Ã÷רÀû6Ïî¡£¡£¡£
Ëï·É£¬£¬ÄУ¬£¬1989Äê2ÔÂÉú£¬£¬²©Ê¿£¬£¬ÊýѧÓëÅÌËã¿ÆÑ§Ñ§Ôº¾«ËãϵÖ÷ÈΣ¬£¬¹ã¶«Ê¡ÏÖ³¡Í³¼ÆÑ§»áÀíÊ¡£¡£¡£²©Ê¿½áÒµÓÚÎ人´óѧ£¬£¬Ö÷Òª´ÓʽðÈÚÊýѧ¡¢¡¢·çÏÕ»³±§¼°ÆäÓ¦ÓõÄÑо¿¡£¡£¡£Ö÷³ÖÍê³É»ò¼ÓÈëÍê³É¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÏîÄ¿¡¢¡¢¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðºÍÆäËüÊ¡Ìü¼¶¿ÆÑÐÏîÄ¿Èô¸É¡£¡£¡£ÒÔµÚÒ»×÷Õß»òͨѶ×÷ÕßÉí·ÝÔÚ¡¶Probability in the Engineering and Informational Sciences¡·¡¶Positivity¡·¡¶International Journal of Theoretical and Applied Finance¡·¡¶Discrete Dynamics in Nature and Society¡·ºÍ¡¶ElectronicResearch Archive¡·µÈÍâÑó×ÅÃûѧÊõÆÚ¿¯½ÒÏþÂÛÎÄ¡£¡£¡£
Íõ»ªÉú£¬£¬ÄУ¬£¬1991Äê10ÔÂÉú£¬£¬²©Ê¿£¬£¬PythonÊÖÒÕÓ¦Óù¤³Ìʦ£¨¸ß¼¶£©£¬£¬¹ã¶«Ê¡¸ßÐÔÄÜÅÌËãѧ»á»áÔ±£¬£¬²©Ê¿½áÒµÓÚ»ªÄÏʦ·¶´óѧ£¬£¬Ö÷ÒªÑо¿»ý·Ö·½³ÌºÍ·ÖÊý½×΢·Ö·½³ÌµÄ¸ßЧ¸ß¾«¶ÈÊýÖµËã·¨¼°ÏÈÑéºóÑéÎó²îÆÊÎö¡£¡£¡£¼ÓÈë¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÖØµãÏîÄ¿1Ï£¬¼ÓÈë¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÏîÄ¿1Ï£¬Ö÷³ÖÒ¼ºÅÓéÀÖAPP²©Ê¿Æô¶¯»ù½ðÏîÄ¿1Ïî¡£¡£¡£½üÄêÀ´£¬£¬ÔÚ¡¶Numerical Algorithms¡·¡¶Computers and Mathematics with Applications¡·¡¶Applied Numerical Mathematics¡·¡¶Advances in Applied Mathematics and Mechanics¡·µÈ×ÅÃû¿¯ÎïÉϽÒÏþѧÊõÂÛÎÄ8ƪ£¬£¬ÆäÖÐSCIÊÕ¼6ƪ¡£¡£¡£
¶þ¡¢¡¢È¡µÃµÄÑо¿Ð§¹û
£¨Ò»£©Ö÷Òª¿ÆÑÐÏîÄ¿
[1] ÐÜ־ƽ£¬£¬»ùÓÚËã×Ó¹ãÒåÄæÀíÂ󵀮æÒìÏßÐÔËã×Ó·½³Ìµü´úÇó½âÑо¿£¨11301397£©, ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÇàÄê¿ÆÑ§»ù½ðÏîÄ¿£¬£¬2014.01--2016.12¡£¡£¡£
[2] ÐÜ־ƽ£¬£¬ÊýѧҪÁìÓëÊÖÒÕÔÚÐÅÏ¢¿ÆÑ§ÖеÄÓ¦Óã¨SYq2014002£©, 2014Äê¹ã¶«Ê¡ÓÅÒìÇàÄêÎ÷ϯ×÷ÓýÍýÏëÏîÄ¿£¬£¬2015.01--2017.12¡£¡£¡£
[3] ÐÜ־ƽ£¬£¬ÎÞÏÞά¿Õ¼äÖÐÆæÒìÏßÐÔϵͳµÄµü´úËã·¨Ñо¿£¨2014A030313625£©, ¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¬£¬ 2015.01--2017.12¡£¡£¡£
[4] ÐÜ־ƽ£¬£¬ÎÞÏÞά¿Õ¼äÖÐÆæÒìÏßÐÔϵͳµÄµü´úËã·¨¼°ÆäÏà¹ØÎÊÌâµÄÑо¿£¨2018 KTSCX234£©, ¹ã¶«Ê¡½ÌÓýÌüͨË׸ßÐ£ÌØÉ«Á¢ÒìÀàÏîÄ¿£¬£¬2019.01--2021.12¡£¡£¡£
[5] Ô¬ÊË·¼£¬£¬Ô¼ÊøËÄÔªÊý¾ØÕó·½³ÌÎÊÌâÓë²ÊɫͼÏñ»Ø¸´ÒªÁìµÄÑо¿(2015A030313646)£¬£¬¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¬£¬2015.08-2019.08¡£¡£¡£
[6] Ô¬ÊË·¼£¬£¬²ÊɫͼÏñÊý¾Ý´¦ÀíµÄËÄÔªÊý¾ØÕó·½³ÌËã·¨Ñо¿£¨2019WGALH20£©£¬£¬Ò¼ºÅÓéÀÖAPP¸Û°ÄÁªºÏÑз¢»ù½ð£¬£¬2021.01-2023.12¡£¡£¡£
[7] Ö£³ÉÓ£¬£¬Í¼Ïñ´¦ÀíÓë»úеѧϰÖеÄÕýÔò»¯ÌåÏÖÒªÁì(YJS-JPJC-22-01)£¬£¬Ò¼ºÅÓéÀÖAPPÑо¿Éú½ÌÓýÁ¢ÒìÏîÄ¿£¬£¬2022.07-2024.07¡£¡£¡£
[8] Ö£³ÉÓ£¬£¬Ä£Ê½Ê¶±ð¿Î³Ì°¸Àý¿â¼°´úÂë¿â½¨É裬£¬Ò¼ºÅÓéÀÖAPPÑо¿Éú½ÌÓýÁ¢ÒìÍýÏëÏîÄ¿£¬£¬2020.5-2021.5¡£¡£¡£
[9] Ëï·É£¬£¬Êг¡²¨¶¯ÏµĽðÈÚ·çÏÕ»³±§Ñо¿-»ùÓÚÒßÇéÓ°ÏìµÄÐÂÊӽǣ¨2020A1515110671£©£¬£¬¹ã¶«Ê¡×ÔÈ»¿ÆÑ§»ù½ðÇøÓòÁªºÏ»ù½ð£¬£¬2020.10-2023.9¡£¡£¡£
[10] Ëï·É£¬£¬º¯ÊýµÄ¶àͨµÀÖØÐÞÀíÂÛ¼°ÆäÔÚËÄÔªÊýÆÊÎöÖеÄÓ¦Óã¨2019KQNCX156£©£¬£¬¹ã¶«Ê¡½ÌÓýÌüÇàÄêÈ˲ÅÀàÏîÄ¿(×ÔÈ»¿ÆÑ§)£¬£¬2020.01-2022.12¡£¡£¡£
[11] Ëï·É£¬£¬Êг¡²¨¶¯ÏµĽðÈÚ·çÏÕ»³±§Ñо¿-»ùÓÚÖéÎ÷¿ªÕ¹µÄÐÂÊӽǣ¨2021030100070004859£©£¬£¬½ÃÅÊлù´¡ÓëÓ¦ÓÃÏîÄ¿£¬£¬2021.05-2023.04¡£¡£¡£
[12] Ëï·É£¬£¬Öǻ۳ǹÜͼÏñÐźÅϵͳµÄÑз¢(HX21186),¹ã¶«Ê¡¿Æ¼¼ÌüÆóÒµ¿Æ¼¼ÌØÅÉÔ±ÏîÄ¿,10Íò£¬£¬2021.11-2022.10¡£¡£¡£
[13] Íõ»ªÉú£¬£¬·ÖÊý½×ƫ΢·Ö·½³Ì¸ß½×Ëã·¨¼°ºóÑéÎó²îÆÊÎö(11931003)£¬£¬¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÖØµãÏîÄ¿£¬£¬2020.1-2024.12£¬£¬¼ÓÈë¡£¡£¡£
[14] Íõ»ªÉú£¬£¬ÁÑ϶¶à¿×½éÖÊÁ½ÏàÁ÷½çÃæÎÊÌâ¸ßЧ¿ìËÙËã·¨ÓëÊýֵģÄâÊÖÒÕ(41974133)£¬£¬¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏÏîÄ¿£¬£¬63Íò£¬£¬2020.1-2023.12£¬£¬¼ÓÈë¡£¡£¡£
£¨¶þ£©½üÆÚÖ÷ҪѧÊõÂÛÎÄ
[1] ÐÜ־ƽ, Liu Z. The Forward Order Laws for {1, 2, 3} 1, 2, 3-and {1, 2, 4} 1, 2, 4-Inverses of Multiple Matrix Products. Complex Analysis and Operator Theory, 2019, 13: 3579-3594.
[2] ÐÜ־ƽ, Qin Y. A note on the reverse order law for least square g-inverse of operator product. Linear and Multilinear Algebra, 2016, 64(7): 1404-1414.
[3] ÐÜ־ƽ, Qin Y. Extremal ranks of some nonlinear matrix expressions with applications. Journal of Optimization Theory and Applications, 2014, 163: 595-613.
[4] ÐÜ־ƽ, Qin Y. The common Re-nnd and Re-pd solutions to the matrix equations AX= C and XB= D. Applied Mathematics and Computation, 2011, 218(7): 3330-3337.
[5] ÐÜ־ƽ, Zheng B. The reverse order laws for {1, 2, 3}-and {1, 2, 4}-inverses of a two-matrix product. Applied Mathematics Letters, 2008, 21(7): 649-655.
[6] Li M Z, Ô¬ÊË·¼, Jiang H. Direct methods on ¦Ç©\Hermitian solutions of the split quaternion matrix equation (AXB, CXD)=(E, F). Mathematical Methods in the Applied Sciences, 2021.
[7] Jiang H, Ô¬ÊË·¼, Cao Y Z. Least squares Hermitian problem of a kind of quaternion tensor equation. Mathematical Methods in the Applied Sciences, 2022, 45(15): 8948-8963.
[8] Ô¬ÊË·¼, Tian Y, Li M Z. On Hermitian solutions of the reduced biquaternion matrix equation (AXB, CXD)=(E, G). Linear and Multilinear Algebra, 2020, 68(7): 1355-1373.
[9] Ô¬ÊË·¼, Yu Y B, Li M Z, et al. A direct method to Frobenius norm-based matrix regression. International Journal of Computer Mathematics, 2020, 97(9): 1767-1780.
[10] Ô¬ÊË·¼, Li M Z, Tian Y. Numerical algorithms for solving the least squares symmetric problem of matrix equation AXB+ CXD= E. Filomat, 2019, 33(6): 1649-1658.
[11] Ö£³ÉÓÂ, Wang N, Cui J. Hyperspectral image classification with small training sample size using superpixel-guided training sample enlargement. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(10): 7307-7316.
[12] Ö£³ÉÓÂ, Ye Z, Cui J, et al. Two-Stage Hyperspectral Image Classification Using Few Labeled Samples. IEEE Geoscience and Remote Sensing Letters, 2023: DOI:10.1109/LGRS.2023.3244196.
[13] Ö£³ÉÓÂ, Cai S, Li Q, et al. A collaborative classification algorithm with multi-view terahertz spectra. Results in Physics, 2022, 42: 106023.
[14] Ö£³ÉÓÂ, Wang N. Collaborative representation with k-nearest classes for classification. Pattern Recognition Letters, 2019, 117: 30-36.
[15] Ëï·É, Chen Y, Hu Y. Set-valued loss-based risk measures. Positivity, 2018, 22: 859-871.
[16] Ëï·É, Hu Y. Set-valued cash sub-additive risk measures. Probability in the Engineering and Informational Sciences, 2019, 33(2): 241-257.
[17] Ëï·É,, Luo K, Feng Y. Multivariate Dynamic Cash Sub-Additive Risk Measures For Processes[J]. International Journal of Theoretical and Applied Finance, 2022, 25(4&5): 1-13.
[18] Íõ»ªÉú, Chen Y, Huang Y, et al. A posteriori error estimates of the Galerkin spectral methods for space-time fractional diffusion equations. Adv. Appl. Math. Mech, 2020, 12(1): 87-100.
[19] Íõ»ªÉú, Chen Y, Huang Y, et al. A Petrov-Galerkin spectral method for fractional convection¨Cdiffusion equations with two-sided fractional derivative. International Journal of Computer Mathematics, 2021, 98(3): 536-551.